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ABSTRACT 

This research quantifies the spatiotemporal statistics of composite radar reflectivity in the vicinity of severe 

thunderstorm reports.  By using over 20 years (1996 – 2017) of data and 500,000 severe thunderstorm 

reports, this study presents the most comprehensive analysis of the mesoscale presentation of radar 

reflectivity composites during severe weather events to date.  We first present probability matched mean 

composites of approximately 5,000 radar images centred on tornado reports that contain one of three types 

of manually-labelled convective storm modes—namely, 1) quasi-linear convective system (QLCS); 2) 

cellular; or 3) tropical system. Next, we generate composites for tornado report data stratified by EF-scale 

and for four temporal periods during which notable severe weather events took place. The data are then 

stratified by hazard, region, season, and time of day.  The results show marked spatiotemporal and intra-

hazard variability in radar presentation.  In general, cellular convection is favoured in the Great Plains of 

the U.S, whereas QLCS convection is favoured in the Southeast U.S.  Night and cool-season subsets showed 

a preference for QLCS convection, whereas day and warm-season subsets showed a preference for cellular 

convection.  These results agree well with the existing literature and suggest that the data extraction and 

organization approach is sound.  Because of this, these data will be useful for future image classification 

studies in climate and atmospheric sciences—particularly those involving storm mode classification.   

 

Keywords: Weather Radar, Severe Weather, Radar Climatology  

This article is protected by copyright. All rights reserved.



1. Introduction 

Severe thunderstorm events are responsible for many weather-related injuries, deaths, and 

billion-dollar-losses in the United States (Ashley 2007; Black and Ashley 2010; Schoen and 

Ashley 2011; Smith and Katz 2013).  Due to their high-impact nature, reports of these events—

including when and where they occurred—have been gathered and systematically archived for 

decades by organizations like the National Oceanic and Atmospheric Administration’s Storm 

Prediction Center.  Examples of how these data are used include storm warning verification 

(Brooks and Correia 2018), generating hazard climatologies (Brooks et al. 2003; Allen and 

Tippet 2015; Edwards et al. 2018), informing teleconnection relationships (Allen et al. 2015), 

exploring changes in the spatiotemporal occurrence of events (Brooks et al. 2014; Gensini and 

Brooks 2018), vulnerability and exposure analyses (Strader et al. 2017), and environmental 

analyses (Thompson et al. 2012).  Of particular interest in the field of severe thunderstorm 

research has been the automated identification of convective storm mode (CSM) in weather 

radar data through manual (Smith et al. 2012; Ellis et al. 2019) or automated approaches 

(Haberlie and Ashley 2018; Gagne et al. 2019; McGovern et al. 2019; Jergensen et al. 2020). 

 Weather radar data has been used for decades to identify CSM (e.g., Fujita 1965).  CSM 

identification can help assess the potential severity of an ongoing or imminent severe weather 

event (McNulty 1995; Smith et al. 2012), and can also be a useful tool for assessing operational 

(Snively and Gallus 2014) and climate model (Haberlie and Ashley 2019) performance.  The 

maturation of historical weather radar data archives has allowed the climatological exploration of 
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radar-derived event (e.g., thunderstorms, CSM) frequency (Matyas 2010; Fabry et al. 2017).  For 

example, mean composite frequency of radar-derived events has been used to explore the 

relationship between locations with significant human-made land use modification and 

thunderstorm frequency (Ashley et al. 2012; Haberlie et al. 2015).  Additionally, the millions of 

radar images generated and archived since the 1990s have been a great resource for applied 

machine learning researchers in the atmospheric and climate sciences (McGovern et al. 2019), 

including projects that train machine learning algorithms to identify CSM (e.g., Haberlie and 

Ashley 2018; Ashley et al. 2019; Jergensen et al. 2020).  However, until now, there has been no 

attempt to create a curated dataset of radar images centred on classifiable “objects”.  These types 

of datasets are common in the field of machine learning, and are widely used for comparing the 

efficacy of different approaches.  For example, the MNIST dataset (LeCun et al. 1998)—a 

collection of hand-written numbers—is publically available and has been referenced by tens of 

thousands of papers.  Domain-specific examples include images of galaxies (Lintott et al. 2011) 

and satellite images centred on tropical systems (Knapp et al. 2016).  This work is the first step 

in communicating the general attributes of this novel dataset which can inform future projects 

that use these data. 

This work seeks to extend the methodology used by ”stationary window” radar analyses 

by instead centring the radar images to be composited on locations and times at which reported 

thunderstorm hazards occurred.  This moving window approach has been used in previous work 

to assess the influence of multiple cities on thunderstorm activity (Fabry et al. 2017), generate 
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composites of current and future heavy rainfall events (Prein et al. 2017), the successes and 

failures of machine learning model predictions (McGovern et al. 2019), and the strengths and 

weaknesses of various multi-model averaging approaches on modeled rainfall output (Clark et al. 

2017).  However, those works used 10s or 100s of “windows” and did not examine the spatial 

variability of the composites.  This research expands these results to examine composites using 

over 500,000 radar images from various regions, times of the day, seasons, and event 

magnitudes.  Additionally, it could provide a methodology for communicating morphological 

variability and evolution within events of interest beyond morphological statistics (Zick and 

Matyas 2016; Matyas et al. 2018). Through a moving window composite analysis, we visualize 

the spatiotemporal patterns in radar reflectivity in the vicinity of severe thunderstorm events in 

the conterminous United States (CONUS).  Additionally, we show that the spatial, seasonal, and 

diurnal composite CSM tendencies match with those of existing CSM climatologies.  This 

suggests that the dataset created through this work will be useful for machine learning 

applications, and in particular, CSM identification using image classification algorithms (LeCun 

et al. 1998). 

2. Data and Methods 

2.1  Radar data 

This study utilizes historical (1996 – 2017) national reflectivity composite mosaic (2 x ~2 km 

grid spacing) data called NOWradtm (The Weather Company).  The raw data, which are integers 

(0 – 16) representing 5 dBZ bins from 0 – 80 dBZ, are sampled at 15-min intervals and 
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interpolated to a 2 x 2 km (4 km2) equal area grid that spans the CONUS in a rectangle from 

approximately 110 to 65 W and 25 to 50 N.  These data have been used in a number of 

climatological studies (Fabry et al. 2017).  Although issues exist within radar datasets, some of 

these are reduced in composite reflectivity by using data from multiple radars (Fabry et al. 2017).  

We address range- and terrain-based issues by limiting the study area to regions with good low-

level radar coverage east of the Rocky Mountains (Figure 1).  One important caveat is that dBZ 

was used in all calculations, and the values were not first converted to Z.  Although the literature 

has argued for both approaches (Lakshmanan 2012; Warren and Protat 2019), these differences 

will not have a large influence on the interpretation of the results. 

2.2 Severe Weather Event Data 

The Storm Prediction Center’s severe report dataset was used for event selection (SVRGIS; 

http://www.spc.noaa.gov/gis/svrgis).  Although the dataset contains well-known biases (Allen 

and Tippett 2015; Edwards et al. 2018), no initial filtering is performed.  All reports from 1996 – 

2017 are cross-referenced with time-indexed radar reflectivity data to only select event reports 

that occurred within 7.5 minutes of available 15-minute radar data.  An additional step subsets 

the data within the central and eastern CONUS where event locations are at least 256 km from 

the edge of the interpolated radar domain (Figure 1).  After the filtering process is completed, 

over 90% of the original severe reports—24,940 tornado, 247,875 hail, and 275,568 wind—are 

retained.  The large sample size, cross-referencing with radar data, and no temporal trend 
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analyses limit the influence of the biases in the dataset.  The starting coordinates (e.g., ‘slat’, 

‘slon’) are used to determine the report’s location. 

2.3 Selection of radar data using filtered SVRGIS reports 

For all 548,383 filtered reports, radar data within a 256 by 256 pixel (~512 by ~512 km) box 

(herein, report box) around the report’s converted grid coordinate are extracted and saved 

(Figure 1.b-d).  This distance was chosen to represent the mesoscale neighbourhood around each 

report since all CSMs exist within the meso-gamma to lower meso-alpha range (Markowski and 

Richardson 2010).  To examine the accuracy of the process, bulk radar statistics within 64 km of 

the report’s grid location were calculated.  Over 99% of the events had at least 40 km2 (roughly 

the size of a convective cell; Miller and Mote 2017) of 40 dBZ or greater pixels in the buffer 

region.  That is, almost all of the filtered reports were near legitimate (i.e., non-noise) dBZ 

values commonly associated with deep, moist convective precipitation rates (Parker and Knievel 

2005).  These images are used to generate composites. 

2.4 Archetype generation 

To examine the attributes of select CSMs (Gallus et al. 2008), an initial labelled dataset of 5,156 

images was generated, consisting of: 1) Quasi-linear Convective System, or QLCS (n=2,330), 2) 

Cellular (n=2,453), and 3) Tropical (n = 373) examples.  To create this dataset, images centred 

on the starting location of tornado reports from 1996 – 2017 were manually assigned to one of 

the aforementioned CSMs.  Although the classifications are subjective, we followed the 
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guidance of previous work (e.g., Gallus et al. 2008; Smith et al. 2012; Ashley et al. 2019; Ellis et 

al. 2019)—specifically, 1) QLCSs are identified by noting a linear organization of pixels ≥ 40 

dBZ (i.e., at least a 3 to 1 length to width ratio) with a length of at least 100 km, 2) Cellular cases 

are identified by noting a circular organization to the ≥ 40 dBZ pixels in the vicinity of the 

report, and that contiguous circular region is entirely within a 100 x 100 km box around the 

report, and 3) Tropical cases are those that occurred near a HURDAT track (Landsea et al. 

2015).  The reports were gathered from the Southern United States (i.e., Oklahoma, Texas, 

Arkansas, Louisiana, Mississippi, Tennessee, Alabama, Florida, Georgia, South Carolina and 

North Carolina).   

Probability matched mean (PMM) composites (Ebert 2001) are generated to visualize the 

tendency of reflectivity shape and intensity across the three CSMs and temporal periods (Figure 

2).  The probability matched approach is used over a simple mean because of the tendency for 

the latter approach to “smooth out” the large intensity gradients noted within precipitation rate 

products (Clark 2017)—one of which is reflectivity (dBZ).  This approach produces more 

realistic spatial patterns of intensity while preserving the shape of the simple mean.  Although 

this approach has historically been used to assess forecast skill of accumulated precipitation 

fields (Clark 2017) and simulated reflectivity factor (Surcel et al. 2014), recent work has used 

this method to generate representative examples of subsets using many observed radar images 

(McGovern et al. 2019; Lagerquist et al. 2020).  To further illustrate the variability that is 

captured within the PMM composites, we first calculated the sums of the 25th and 75th percentile 
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ranked intensity distributions within each subset.  We then stratify these subsets by selecting 

only those images with a ranked intensity distribution sum less than or equal to (greater than or 

equal to) the 25th (75th) percentile distribution sums.  In this way, we can visualize the extremes 

within the subsets, and communicate the morphological variability therein. 

To confirm that the PMM composite images are more representative than less complex 

approaches, we compared them to composite images generated by a simple mean and median 

using the same radar image subsets.  Specifically, we calculated the ranked reflectivity (dBZ) 

found within the composites (i.e., mean, median, and PMM) and compared those to the median 

ranked reflectivity for the entire subset (Figure 3).  The simple mean composite image produces 

much broader areas of lower reflectivity values (i.e., < 15 dBZ) and fails to reproduce higher 

reflectivity values (i.e, > 15 dBZ) compared to any given image within the subset.  The median 

composite image generally produces representative coverage for low reflectivity values, but, like 

the simple mean, it fails to reproduce higher reflectivity values.  Ranked reflectivity from the 

PMM composite image, however, closely traces the median reflectivity ranks for all CSMs, 

suggesting it is representative of the intensity distribution one would see within the samples.  

This is consistent with previous work that demonstrated the advantages of PMM composites 

over the simple ensemble mean of precipitation accumulation, particularly for higher intensity 

values (Clark 2017). 

The resulting PMM composites suggest that, for all of the selected tornado reports, the 

composite generated using affiliated 25th percentile radar images (Figure 2.a) resemble Cellular 
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CSM, whereas the composite of 75th percentile images (Figure 2.c) resemble QLCS CSM.  The 

ranks for the first 0 dBZ pixel suggests that the median coverage of ≥ 5 dBZ pixels is around 

36%, whereas this value is 47% for the 75th percentile distribution and 24% for the 25th 

percentile distribution (Figure 3.a).  QLCS samples (Figure 2.d, e, f) tend to exhibit an elongated 

area of higher reflectivity values, and this pattern is consistent for the 25th and the 75th percentile 

composite images.  The median coverage of non-zero pixels for QLCS images is around 42%, 

and the 25th and 75th percentile coverage are ~33% and ~52%, respectively (Figure 3.b). On the 

other hand, Cellular examples (Figure 2.g, h, i) show some variability between the 25th percentile 

images (Figure 2.g) and the 75th percentile images (Figure 2.i).  Namely, there is a marked 

increase in coverage of non-zero reflectivity values for the 75th percentile images.  This is the 

result of “cell-in-cluster” cases, which contrast the “isolated cellular” examples that comprise the 

25th percentile subset.  Median, 25th, and 75th percentile coverage of non-zero pixels are 

approximately 26%, 17%, and 37%, respectively, for Cellular examples (Figure 3.c).  A 

noticeable and ubiquitous difference between the QLCS and Cellular composites is the lack of 30 

dBZ and greater reflectivity values in the southern two-fifths of the Cellular composite images.  

This reflects the non-contiguous nature of “cell-in-cluster” CSM and the preference for tornado 

formation in “tail-end Charlies”, or supercells that are on the southern flank of a storm cluster 

(Beveridge et al. 2019).  Tropical examples (Figure 2.j, k, l) generally produce more widespread 

reflectivity values compared to Cellular, but have intensities lower than both QLCS and Cellular 

samples.  Additionally, the westward offset of lower intensities for Tropical samples, particularly 
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for the overall composite (Figure 2.k) and 75th percentile composite (Figure 2.l), matches up well 

with the preferred location of tornadoes relative to the centre of circulation for land falling 

storms in the CONUS (Edwards 2012).  Median, 25th, and 75th percentile coverage of non-zero 

pixels for Tropical samples are approximately 50%, 39%, and 62%, respectively (Figure 3.d).  

Perhaps unsurprisingly, the QLCS/Cellular/Tropical composite depicted in Figure 2.b appears as 

a combination of the QLCS and Cellular composites (i.e., “mixed mode”), due to their 

abundance within the manually labelled data.  It is also clear that Tropical samples generally 

have more non-zero pixels than QLCS and Cellular examples.  However, median ≥ 40 dBZ 

coverage is greater for both QLCS (3.3%) and Cellular (2.2%), compared to Tropical (1.5%).  

These PMM composite archetypes and statistics are reasonable and can be used to qualitatively 

assess the CSM tendency within various subsets of unlabelled images. 

3.  Unlabelled image dataset 

3.1 Composites from notable events 

PMM composite images were generated for tornado reports during notable severe weather 

events (Figure 4).  Specifically, we generated images for the: 1) 27 April 2011 tornado outbreak 

(Knupp et al. 2014); 2) 24-25 September 2005 Hurricane Rita tornadoes (Moore and Dixon 

2011); 3) 4-5 April 2011 serial derecho event (Corfidi et al. 2016); and 4) 29 June 2012 

progressive derecho event (Corfidi et al. 2016).  The purpose of these analyses is to further 

communicate the utility of the composites, as well as identify the variability seen within even the 
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same type of severe weather report.  This also provides further verification that the approach is 

producing reasonable results by affording a qualitative comparison to the radar presentation 

during these well-documented events. 

 For the 27 April 2011 event, we focused on the early afternoon to evening period (1800 

UTC to 0300 UTC).  This period was chosen for demonstration purposes because the 

predominant storm mode for tornado producing storms was cellular (Knupp et al. 2014), and this 

tendency is clearly illustrated in Figure 4.a, b, c.  Specifically, the pattern shows a strong, high 

intensity (> 50 dBZ), “kidney-bean-shaped” region within 25 km of the center of the image (i.e., 

the location of the storm reports) in the overall PMM composite (Figure 4.b), as well as the 25th 

(Figure 4.a) and 75th percentile (Figure 4.c) composites.  Additionally, the northern half of the 

composite has greater coverage of high-intensity pixels, which matches the regional radar 

depiction during this event.  The variability between the 25th and 75th percentile images denote 

the “isolated cellular” and “cell-in-cluster” events that occurred during this event, and the overall 

composite reflects these tendencies.  Similarly, the composite from the Rita event—where 

reports were selected from 1400 UTC on 24 September 2005 to 0000 UTC on 26 September 

2005—depicts a “bulls-eye” in the center of the image, but with a contrasting northward (Figure 

4.d) and westward preference (Figure 4.e, f) of higher pixel coverage.  This pattern represents the 

preferred location of tornado reports relative to the center of Rita (Edwards 2012) and the 

evolution of this location during the event.  Initially, tornadoes were observed in the upper right 

quadrant of the storm, but this region shifted to the lower right quadrant later in the period.  For 
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the wind-report examples, the squall line that produced a serial derecho (Corfidi et al. 2016) is 

clearly resolved within the 25th percentile (Figure 4.g), overall (Figure 4.h) and 75th percentile 

(Figure 4.i) composites that include images from 1300 UTC on 4 April 2011 to 0300 UTC on 5 

April 2011.  Only the central part of the images depicts the classic “quasi-linear” region of high-

intensity pixels associated with intense squall lines due to the shifting orientation of the squall 

line across its ~1000 km axis.  Similarly, the progressive derecho event of 29 June 2012 (Figure 

4.j, k, l) captures the comparatively more compact linear structure and trailing-stratiform 

precipitation that is typical of the leading-line / trailing-stratiform pattern (Parker and Johnson 

2000).  Similar to the Rita event, the stratification by percentile appears to capture the initial 

cellular structure across the Midwest and the leading-line / trailing-stratiform structure as it 

moved to the east coast later in its life cycle.  Again, Figure 5 illustrates that the PMM approach 

is more representative of the reflectivity distribution than the mean or median composite images 

for these events.  The April 27th 2011 event (Figure 5.a) and the June 2012 derecho both have 

lower median coverage of non-zero pixels compared to the Rita event (Figure 5.b) and the 

progressive derecho event (Figure 5.c).  Although there is variability in the orientation, intensity, 

and location of CSM structures relative to storm reports, tendencies in reflectivity patterns are 

captured by the composites. 

3.2 Composites stratified by tornado damage rating  

Previous work has shown a strong relationship between CSM and EF-scale rating (Trapp et al. 

2005; Smith et al. 2012; Ashley et al. 2019).  Namely, a Cellular CSM is most commonly 
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associated with significant (≥ EF2) to violent (≥ EF4) tornadoes.  Thus, composites stratified by 

EF-scale rating should reflect these findings.  For all tornado events considered in this study that 

were given a rating (n=24,850), their associated images were stratified into groups ranging from 

EF0 to EF5 (Figure 6; Figure 7).  Indeed, the PMM composites show a steady transition from 

“mixed mode” QLCS and Cellular CSM archetypes (Figure 2) for EF0 to EF2 (Figure 6) to 

cellular for EF3 and EF4 (Figure 7.a-f) to isolated cellular for EF5 (Figure 7.g-i).  Although there 

is variability within these composites, there is a clear trend of a reduction in reflectivity coverage 

consistent with a shift from QLCS to Cellular CSM as EF-scale rating increases (Figure 8).  

There is also a marked reduction in the coverage of non-zero pixels in the “maximum” ranked 

distribution as rating increases. More modest reductions within increasing EF-scale rating are 

evident in the median, 25th, and 75th percentile non-zero pixel coverage, with coverage 

maximizing at EF1 (32%, 21%, and 45%, respectively), and minimizing for EF5s (18%, 12%, 

and 31%, respectively). Interestingly, however, even the EF3 and EF4 composites have areas of 

mean convective (≥ 40 dBZ) reflectivity extending to the north, which suggests the possibility of 

more specific CSMs like those proposed by Smith et al. (2012), namely, cell-in-line and cell-in-

cluster, in addition to QLCS.  This “mixed-mode” is illustrated by the differences between the 

25th (Figure 6.a, d, g; Figure 7.a, d) and 75th (Figure 6.c, f, i; Figure 7.c, f) percentile PMM 

composite images—specifically, the Cellular CSM in the 25th percentile images and the QLCS / 

clustered CSM in the 75th percentile images.  The CSMs depicted in the 75th percentile images 

are associated with problematic issues like the highest fatality and injury rate per tornado 
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(supercell in line; Brotzge et al. 2013) and lowest probability of detection (QLCS; Brotzge et al. 

2013).  These results affirm that even significant to violent tornadoes can occur in “messy” or 

mixed-mode mesoscale convective scenarios, leading to reductions in warning efficacy. 

3.3 Spatiotemporal variability of composites 

To facilitate spatial analyses and comparisons, the eastern CONUS is organized into twenty-nine 

512 x 512 km grids and one ocean control grid (Figure 9). Storm reports are associated with a 

grid using a one-to-one spatial join in ArcGIS Pro.  Next, PMM composites are generated for 

each grid by only using images associated with reports that occur within that grid (Figure 9).  For 

example, the image plotted within grid 22 (Birmingham) in Figure 9.a is the PMM composite for 

all images associated with any severe (tornado, hail, and wind) report that occurred within that 

grid cell.  All of the PMM composite images have the same scale as the original data.  That is, 

the PMM composite is inserted onto the 2-km equal area grid by anchoring the centre of the 

image on the pixel closest to the centroid of each grid, and filling out 128 pixels to the north, 

south, east and west of that central pixel.  Through this analysis, we can assess the spatial 

variability in “typical” radar reflectivity appearance.  The colour map used in the composite 

figures was chosen to replicate the typical colour scale used when presenting weather radar 

reflectivity.  The authors feel that the disadvantages of the generally poor colour map choice are 

balanced by the familiarity experts and non-experts have with this colour scale. 

 Marked spatial patterns are illustrated by stratifying the data into gridded regions.  The 

composites for all events (Figure 9.a), as well as those stratified by hazard type (Figure 9.b-d), 
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show a tendency for radar images to exhibit a more cellular appearance in the High Plains with 

an increasingly QLCS-like appearance in Southeast CONUS.  This pattern is particularly evident 

within the tornado composites (Figure 9.b).  Southern Great Plains tornado grids (e.g., 14-

Wichita and 20-Dallas) match up well with the cellular archetype depicted in Figure 2.g-i, 

whereas tornado grids within the Southeast CONUS (e.g., 21-Little Rock and 22-Birmingham) 

match with the QLCS archetype (Figure 2.d-f).  Conversely, hail composites (Figure 9.c) suggest 

that the preferred storm mode is predominately cellular.  Although, the cells appear to be more 

isolated in grids like 13-Denver compared to 16-Nashville.  Wind composites (Figure 9.d) show 

a QLCS-like pattern in the Southeast CONUS, and a “mixed mode” pattern as depicted in Figure 

2.b in the Midwest CONUS.  The lack of ≥ 5 dBZ to the NW and SE of severe thunderstorm 

reports is expected and ubiquitous throughout the composites.  The initiation and sustenance of 

deep, moist convection that produces severe weather requires a lifting mechanism, which is 

typically provided by frontal boundaries (McNulty 1995).  To the NW of the report, this is often 

an area where cold or dry air has undercut warm or moist air, and instability has decreased.  To 

the SE of the report, this area often experiences a capping inversion and air parcels are spatially 

displaced from an adequate lifting mechanism. 

Extending the analysis to warm (April – September) and cool (October – March) seasons 

reveals temporal variability within the grids (Figure 10).  In general, the spatial coverage of the 

“mean storm” either increases or becomes more elongated during the cool season, particularly 

for tornado and wind events.  Summer tornado events produce composites most similar to the 
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cellular archetype (Figure 2.g-i) in the Great Plains and Midwest CONUS, and an increasing 

QLCS-like pattern as one moves into the Southeast CONUS (Figure 10.a).  Focusing on the 

eastward transition between grids 19-Amarillo, 20-Dallas, 21-Little Rock, and 22-Birmingham, 

there is a clear evolution from cellular to QLCS-like composites.  In contrast, the eastward 

transition from 7-Casper, 8-Sioux Falls, 9-Des Moines, and 10-Chicago shows a more subtle 

cellular to QLCS-like transition, potentially caused by more compact QLCSs or a more balanced 

mix of Cellular and QLCS structures compared to the Southeast.  Perhaps not surprisingly, 27-

Baton Rouge, 28-Mobile, and 29-Orlando, exhibit a Tropical-like structure in their warm-season 

tornado composites.  These CSMs shift towards QLCS-like structures in the cool season (Figure 

10.b), and this change is ubiquitous across the grids. This shift is not as obvious for hail events 

(Figure 10.c-d), and although a clear elongation of the spatial coverage of reflectivity intensity is 

noted, the best qualitative fit for the grids would still be the cellular archetype in Figure 2.g-i.  

Similar to the tornado composites, the composites for wind events shift from a cellular or mixed-

mode pattern in the warm season to a QLCS pattern in the cool season (Figure 10.e-f).   The 

seasonal dichotomy could be explained by a balance between instability and convective 

inhibition.  Convective (≥ 40 dBZ) reflectivity values are often associated with vigorous deep, 

moist convection (Ashley et al. 2012), and environmental conditions that support such 

convection have favorable thermodynamics and kinematics (McNulty 1995).  However, the 

utilization of these ingredients by potential storms is conditioned on other factors such as the 

strength of a capping inversion and forcing for ascent.  During the spring and early summer, a 
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large portion of the study area experiences supportive thermodynamics, kinematics, and 

conditional environmental factors that lead to the frequent development of widespread 

convection (Doswell 2001; Gensini and Ashley 2011).  Moving into the late summer and early 

fall, stronger capping inversions and weaker forcing can limit the coverage of convection.  The 

result within the composites is the contraction of the “mean storms” due to the limited coverage 

of non-zero reflectivity values as a response to increasingly localized and less widespread 

supportive environments during this period. 

We stratified the reports into two subsets to examine the influence time of day had on the 

composites, namely: 1) an early afternoon and early evening subset (1700 – 0500 UTC); and 2) a 

night and morning subset (0500 – 1700 UTC).  The limitations of choosing these subsets is that 

the amount of daylight hours, as well as local noon and local midnight, differs over the course of 

a year and within the study area.  Thus, these periods should be considered only roughly 

representative of the typical time periods in which initial convection develops (early afternoon 

and evening) and when upscale growth has occurred (night and morning) based on previous 

work (Carbone and Tuttle 2008).  Similar patterns to the seasonal analyses emerge from the 

diurnally-stratified composites (Figure 11).  In particular, the transition from the afternoon and 

evening subset to the night and morning subset results in an increased area covered by the 5 dBZ 

contour for all of the hazard types and most of the grids.  Tornado composites (Figure 11.a-b) 

exhibit a marked expansion in spatial coverage during the night and morning period, including 

higher intensity contours that denote regions of convection (i.e., 40 dBZ).  Some of the more 
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dramatic diurnal increases in reflectivity coverage includes 9-Des Moines and 15-St. Louis.  Hail 

events (Figure 11.c-d) experience an expansion in spatial coverage and a change in how the most 

intense reflectivities are oriented relative to the areas of weaker mean reflectivity during the 

night and morning period.  Specifically, areas of higher intensity are on the southern flank of the 

5 dBZ contour region, whereas the afternoon to evening composites have this area on the 

southwest flank, and this pattern is particularly evident in grids 9-Des Moines and 10-Chicago.  

Based on when hail typically occurs in this area (i.e., late spring and early summer), it is possible 

that this signal is related to the nocturnal low level jet interacting with frontal boundaries 

(Walters et al. 2008).  Wind composites similarly show an expansion of weaker reflectivity (≥ 5 

dBZ) and convective reflectivity (≥ 40 dBZ) for many of the grids in the night and morning 

subsets (Figure 11.e-f).  This strong signal suggests a preference for QLCS-like structures over 

cellular structures during this time of the day.  Although peak heating occurs during the 

afternoon, the upscale growth of organized convection associated with severe thunderstorm 

events is largely relegated to the overnight hours, particularly during the summer (Carbone and 

Tuttle 2008; Geerts et al. 2017).  The merging and subsequent reinforcement of cold pools as an 

event matures results in the mesoscale area favorable for lifting parcels to the level of free 

convection to increase from the meso-gamma scale (~10 km) to the meso-beta scale (~100 km; 

Coniglio et al. 2010).  Additionally, supportive thermodynamics and kinematics that develop 

exclusively during the overnight hours allows the development of convection that is displaced 

from surface frontal boundaries (Walters et al. 2008; Weckworth et al. 2019).  The overall effect 
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of these factors results in the increase in coverage of convection during the overnight and 

morning period. 

4.  Discussion and Conclusions 

This study used a moving window composite analysis to illustrate the climatological tendency of 

radar-derived spatial patterns affiliated with recorded severe thunderstorm hazards in the eastern 

two-thirds of the CONUS.  Three convective storm modes (CSMs) were chosen to illustrate the 

variability between composites generated for approximately 5,000 manually identified QLCS, 

Cellular, and Tropical samples.  For unlabelled tornado samples, the images were first stratified 

by F/EF scale to examine the CSM tendency within the resulting composites.  To examine the 

spatiotemporal variability of the composites, over 500,000 images were used to create 

composites for 30 “report box” grids over the eastern CONUS.  This analysis informed an 

exploration of not only the regional variability of these composites, but also the seasonal and 

diurnal variability therein. 

 The results affirm previous work that examined CSM within the CONUS (Smith et al. 

2012; Ashley et al. 2019).  In particular, strong tornadoes were associated with a “Cellular” 

CSM tendency, whereas weaker tornadoes were associated with “QLCS” or mixed 

Cellular/QLCS CSM tendency.  CSM tendency within Great Plains grids was Cellular, whereas 

the tendency for Southeast CONUS grids was QLCS or mixed Cellular/QLCS.  Day and warm-

season events preferred a Cellular CSM, whereas cool-season and night events preferred QLCS 
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or mixed Cellular/QLCS. The results show the utility of the moving window composite 

approach, due to its agreement with existing manual and automated studies of spatiotemporal 

CSM variability. 

 Future work using these data should explore ways of using semi-supervised (Zhu and 

Goldberg 2009) machine learning classification techniques to assign CSM labels to the 500,000 

extracted images.  A large dataset of labelled images would be useful to the meteorology and 

climate research community, particularly those who are engaged in image classification 

applications.  For example, these data can populate an “image search engine” that can perform 

image retrieval tasks (Guo et al. 2016).  Users of the image search engine would then be able to 

query the severe weather report dataset by the appearance of the radar image, in addition to the 

attributes provided within SVRGIS (time, location, magnitude, etc.).  Such projects have been 

successful in other domains (LeCun et al. 1998; Lintott et al. 2011; Knapp et al. 2016) by: 1) 

providing a consistent dataset from which to draw examples; and 2) adding context to the 

performance of new machine learning approaches.  Additionally, these and similar projects have 

improved public access to scientific datasets, educated non-experts on physical phenomena, and 

even included so-called “citizen scientists” in the dataset-building process.  Like other projects, 

this dataset can be modular and add new data as it becomes available through a versioning 

process. 
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Figure 1. Study domain (black outline) and data from 1996 – 2017 for (a) severe weather report locations, and 
annual mean “report box” frequencies for (b) tornadoes, (c) hail, and (d) wind.  The black dashed box in (b-d) 
represents an example of the extent of a 512 x 512 km “report box”.  
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Figure 2. Probability matched mean composites calculated using subsets of reflectivity images centred on manually 
identified tornado (≥ EF1) reports from 1996 – 2017 in the Southeast U.S organized by convective storm mode. The 
convective storm modes depicted are (a, b, c) QLCS, Cellular, and Tropical, (d, e, f) QLCS, (g, h, i) Cellular, and (j, 
k, l) Tropical. Three probability matched mean composites were generated from each convective storm mode subset, 
namely: (a, d, g, j) only images with distribution sums ≤ 25th percentile distribution sum, (b, e, h, k) all images, and 
(c, f, i, l) only images with distribution sums ≥ 75th percentile distribution sum.  
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Figure 3. Median ranked intensity (black line) in units of dBZ for all images within each convective storm mode 
subset, namely (a) QLCS, Cellular, and Tropical, (b) QLCS, (c) Cellular, and (d) Tropical.  For each subset, ranked 
intensity is also plotted for composite images generated using a probability matched mean (red dashed line), simple 
mean (black dotted line), and median (black dash-dotted line).  The regions representing the ≤ 25th percentile 
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(lightest green), 25th to 75th percentile (medium green), and 75th to maximum (darkest green) distribution regions are 
colour filled. 
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Figure 4. As in Figure 2, except for images affiliated with tornado reports from (a, b, c) 1800 UTC on 27 April 2011 
to 0300 UTC on 28 April 2011 and (d, e, f) 1400 UTC on 24 September 2005 to 0000 UTC on 26 September 2005 
and wind reports from (g, h, i) 1300 UTC on 4 April 2011 to 1100 UTC on 5 April 2011 and (j, k, l) 1600 UTC on 
29 June 2012 to 0600 UTC on 30 June 2012.  
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Figure 5. As in Figure 3, except for images affiliated with tornado reports from (a) 1800 UTC on 27 April 2011 to 
0300 UTC on 28 April 2011 and (b) 1400 UTC on 24 September 2005 to 0000 UTC on 26 September 2005 and 
wind reports from (c) 1300 UTC on 4 April 2011 to 1100 UTC on 5 April 2011 and (d) 1600 UTC on 29 June 2012 
to 0600 UTC on 30 June 2012.  
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Figure 6. As in Figure 2, except for images filtered by EF-scale.  Namely, only those images associated with 
tornadoes rated (a, b, c) EF0, (d, e, f) EF1, and (g, h, i) EF2.  
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Figure 7. As in Figure 2, except for those images associated with tornadoes rated (a, b, c) EF3, (d, e, f) EF4, and (g, 
h, i) EF5.   
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Figure 8. As in Figure 3, except for (a) EF0, (b) EF1, (c) EF2, (d) EF3, (e) EF4, and (f) EF5 reports. 

Figure 9. As in Figure 2, except for (a) all severe weather events, (b) tornado events, (c) hail events, and (d) wind 
events from 1996 – 2017 that are spatially filtered by grid (1-30) region.  A minimum of 10 reports within a grid was 
necessary to plot the composites. Each box has the dimensions of 512 x 512 km.  
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Figure 10. As in Figure 9, except for (a, c, e) warm season (April – September), and (b, d, f) cool season (October – 
March) for all hazard intensities.  
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Figure 11. As in Figure 9, except for (a, c, e) “afternoon and early evening” (1700 - 0500 UTC), and (b, d, f) “night 
and morning” (0500 – 1700 UTC).  For each period, the ending time is not included in that subset. 
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a. Warm-Season Tornado b. Cool-Season Tornado 

c. Warm-Season Severe Hail d. Cool-Season Severe Hail 

e. f. Warm-Season Severe Wind Cool-Season Severe Wind 
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a. 1700 – 0500 UTC Tornado b. 0500 – 1700 UTC Tornado 

c. 1700 – 0500 UTC Severe Hail d. 

e. f. 1700 – 0500 UTC Severe Wind 0500 – 1700 UTC Severe Wind 

0500 – 1700 UTC Severe Hail 
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Mean Storms: Composites of Radar Reflectivity Images During Two Decades 

of Severe Thunderstorm Events 
 

ALEX M. HABERLIE*, WALKER S. ASHLEY, MARISA R. KARPINSKI 

 

 

Weather radar image archives provide a rich repository of storm 
intensity proxies that have been used in many climate studies.  We 
describe a method for illustrating the mean spatial structures of storm 
intensity around half a million severe thunderstorm reports.  The 
resulting mean storm structures vary greatly between regions, time of 
day, time of year, and affirms existing studies.  This dataset will also 
provide a method for researchers to benchmark new approaches in 
image classification and storm mode identification.  
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